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Abstract

Let G be a finite group and let d be a divisor of |G |. Define nd to be
the number of subgroups of G of order d . We call G a subgroup-perfect
group, denoted SP -Group, if, for every divisor d of |G | with nd 6= 0,
nd divides |G |. The authors investigate abelian SP -groups. (Chad T.
Lower and Lenny Jones)

1. INTRODUCTION Mathematicians and nonmathematicians have been

fascinated for centuries by the properties and patterns of numbers. It is this

curiosity that prompted the authors to look at patterns within finite groups.

Specifically, we are interested in finding out the number of groups that have

the property of having the number of subgroups of the group with a certain

order dividing the order of the group. Our initial assessment leads us to believe

that there are an infinite number of such groups and we will attempt to find

all of them.

We start by looking at finite abelian groups. A group is a finite or infi-

nite set of elements together with a binary operation which together satisfy

the four fundamental properties of closure, associativity, the identity property,

and the inverse property. An abelian group is defined to be a group for which

the elements commute (i.e. AB = BA for all elements A and B in the group).

A finite group is a group containing a finite number of elements. By comput-

ing the characteristic factors, any abelian group can be expressed as a group

direct product of cyclic subgroups. It is these cyclic subgroups that we will be

focusing our attention on.

2. PRELIMINARIES Throughout this article, G will be a finite abelian

group and |G| will denote its cardinality.



Definition 1. Let d be a divisor of |G|. We define nd to be the number of

subgroups of G with order d.

Definition 2. A group G is said to be a subgroup-perfect group, denoted

SP-Group, if, for every divisor d of |G| with nd 6= 0, nd divides |G|.

Definition 3. Let x be a positive integer and let p be a prime number. We

define

(Zp)
x = Zp × Zp × · · · × Zp︸ ︷︷ ︸

x-factors

.

Example 1. (Trivial Case) Let G = Zm where m is a positive integer. G is

a finite, cyclic abelian group. For any divisor d of G, nd = 1. Therefore, G is

an SP-Group.

Example 2. Let G = Z6 × Z6 ' (Z2)
2 × (Z3)

2. Then |G| = 36. Divisors of

|G| are 1, 2, 3, 4, 6, 9, 12, 18, and 36. G is an SP-Group (as indicated by the

following table) since nd divides |G| for all values of d.

d nd subgroups of G with order d

1 1 〈(0, 0)〉
2 3 〈(0, 3)〉, 〈(3, 0)〉, 〈(3, 3)〉
3 4 〈(0, 2)〉, 〈(2, 0)〉, 〈(2, 2)〉, 〈(2, 4)〉
4 1 〈(0, 3), (3, 0)〉
6 12 〈(0, 1)〉, 〈(1, 0)〉, 〈(1, 1)〉, 〈(1, 2)〉, 〈(1, 3)〉, 〈(1, 4)〉,

〈(1, 5)〉, 〈(2, 1)〉, 〈(2, 3)〉, 〈(2, 5)〉, 〈(3, 1)〉, 〈(3, 2)〉
9 1 〈(0, 2), (2, 0)〉
12 4 〈(0, 3), (1, 0)〉, 〈(2, 1), (3, 0)〉, 〈(3, 0), (4, 1)〉, 〈(0, 1), (3, 0)〉
18 3 〈(0, 1), (2, 0)〉, 〈(0, 2), (1, 0)〉, 〈(1, 1), (2, 0)〉
36 1 G

Example 3. Let G = Z2 × Z2. Then |G| = 4. Divisors of |G| are 1, 2, and

4. So G is not an SP-Group (as indicated by the following table) since n2 = 3

does not divide |G|.

d nd subgroups of G with order d

1 1 〈(0, 0)〉
2 3 〈(0, 1)〉, 〈(1, 0)〉, 〈(1, 1)〉
4 1 G
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Example 4. Let S3 = {(1), (12), (13), (23), (123), (132)} (note: S3 is not

an abelian group but used to show a non-abelian example of an SP-Group).

Observe that |S3| = 6. Possible values of d are 1, 2, 3, and 6. Then S3 is an

SP-Group as indicated by the following table:

d nd subgroups of G with order d

1 1 〈(1)〉
2 3 〈(12)〉, 〈(13)〉, 〈(23)〉
3 1 〈(123)〉
6 1 S3

Proposition 1. Let G ' (Zp)
x where p is prime. The number of subgroups of

order pa, where 1 ≤ a ≤ x is defined as

npa =
a∏

j=1

px−j+1 − 1

pj − 1
.

Proof: See [1]. ¥

Proposition 2. Let G ' (Zp)
x×(Zq)

y where p and q are distinct primes. The

number of subgroups of order paqb can be found by multiplying the number of

subgroups of order pa and the number of subgroups of qb since pa and qb are

relatively prime. We find

npaqb = npa · nqb .

Proposition 3 (Trivial Case). Let G ' Zp × Zq, where p and q are distinct

primes. Then G is an SP-group.

Proof: The proof can be seen as a specialized case of Example 1 and Propo-

sition 2. ¥

Theorem 1. If G ' (Zpn)2 = Zpn × Zpn, where p is prime, then G is not an

SP-group for any positive integer n.

Proof: G has (pn)2 = p2n elements and has subgroups of order p0 = 1, p1 = p,

p2, . . ., p2n−1, and p2n. The number of subgroups of order p is

np = 2p− 1,
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which will never divide p2n since p < 2p − 1 < 2p for all primes p, but all

divisors of p2n will be of the form kp for some k ∈ Z. In reality, k must be

some power of p. ¥

Looking at the case G ' (Zp)
x × (Zq)

y, where p and q are distinct primes,

p < q, and at least one of x and y is > 1, there are three cases that can occur.

Our three cases that can occur are when x = y, x < y, and x > y. Let us

begin with the case when x = y.

Proposition 4. Let G ' (Zp)
2×(Zq)

2, where p and q are distinct primes with

p < q. Then G is an SP-group if and only if p = 2 and q = 3.

Proof: We know |G| = p2q2. The number of subgroups of order p0 = 1, p2,

q0 = 1, and q2 equals 1 and 1 will always divide |G|. Also, from Proposition

2, the number of subgroups of order p2q2 equals 1, which will always divide

|G|. Ignoring these trivial cases, we look at the number of subgroups of order

p1 = p (= pq2 by Proposition 2), q1 = q (= p2q by Proposition 2), and pq.

np =
1∏

j=1

p2−j+1 − 1

pj − 1
=

p2 − 1

p− 1
= p + 1.

nq =
1∏

j=1

q2−j+1 − 1

qj − 1
=

q2 − 1

q − 1
= q + 1.

npq = npnq = (p + 1)(q + 1) (by Proposition 2).

To be an SP-group, (p + 1)|p2q2, (q + 1)|p2q2, and (p + 1)(q + 1)|p2q2. We will

look at these conditions individually starting with (p + 1)|p2q2. Since (p + 1)

cannot divide p2 or p, then (p + 1)|q2 in order for G to be an SP -group. Sim-

ilarly, (q + 1)|p2. (Note: We can ignore the case when (p + 1)(q + 1)|p2q2

since it is equivalent to say (p+1)|q2 and (q+1)|p2. These two cases are being

considered in np and nq.) Since p < q, we know q is odd, so p2 and hence

p must be even. Therefore, p = 2. Since p = 2, then (q + 1)|4 and q = 3.

Example 2 works out the specifics for how this is an SP-Group. Therefore,

G ' (Z2)
2 × (Z3)

2 is the only SP -group of this form. ¥

Proposition 5. Let G ' (Zp)
3×(Zq)

3, where p and q are distinct primes with

p < q. Then G is not an SP-group.
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Proof: We know |G| = p3q3. The number of subgroups of order q is

nq =
1∏

j=1

q3−j+1 − 1

qj − 1
=

q3 − 1

q − 1
= q2 + q + 1.

We know p3 has 4 divisors: 1, p, p2, and p3. In order for q2 +q+1|p3, q2 +q+1

must equal one of the divisors of p3. We know q2 + q + 1 cannot equal 1, p,

or p2 since p < q. So q2 + q + 1 = p3. We can also show that the number of

subgroups of order p is

np =
1∏

j=1

p3−j+1 − 1

pj − 1
=

p3 − 1

p− 1
= p2 + p + 1.

Since p2 + p + 1 must divide q3, then either p2 + p + 1 = q, p2 + p + 1 = q2,

or p2 + p + 1 = q3. If p2 + p + 1 = q then q2 + q + 1 = p3 can be rewritten as

(p2 + p + 1)2 + (p2 + p + 1) + 1 = p3 or p4 + 2p3 + 4p2 + 4p + 2 = p3 which

is impossible. If p2 + p + 1 = q2 then q2 + q + 1 = p3 can be rewritten as

(p2 + p + 1)2 + q + 1 = p3 or q = −p4 − p3 − 3p2 − 2p− 2 which is impossible.

If p2 + p + 1 = q3 then q2 + q + 1 = p3 can be rewritten as q2 + q = (p− 1)(q3)

or 1
q
+ 1

q2 +1 = p which is impossible. Therefore, no such p and q exist so that

G is an SP-group. ¥

Proposition 6. Let G ' (Zp)
x × (Zq)

x, where p and q are distinct primes

with p < q and x ≥ 4. Then G is not an SP-group.

Proof: We know |G| = pxqx. For all values of x > 3, the number of subgroups

of order q2 is

nq2 =
2∏

j=1

qx−j+1 − 1

qj − 1
=

(qx − 1)(qx−1 − 1)

(q − 1)(q2 − 1)
.

To be an SP-group, nq2 must divide px. When x is odd,

nq2 = (qx−1 + qx−2 + · · ·+ q + 1)(qx−3 + qx−5 + · · ·+ q2 + 1),

but nq2 > px since p < q. When x is even,

nq2 = (qx−2 + qx−3 + · · ·+ q + 1)(qx−2 + qx−4 + · · ·+ q2 + 1),

but nq2 > px since p < q. Therefore, no such p and q exist so that G is an

SP-group. ¥

To summarize the previous:
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Theorem 2. Let G ' (Zp)
x × (Zq)

x, where p and q are distinct primes with

p < q. Then G is an SP-group if and only if x = 1 and p, q are prime or

x = 2 and p = 2, q = 3.

Next, let’s look at the case when x < y.

Theorem 3. Let G ' (Zp)
x × (Zq)

y, where p and q are distinct primes with

p < q and x and y are positive integers with x < y. Then G is not an SP-group.

Proof: We know |G| = pxqy. For all values of x and y, with x < y, the number

of subgroups of order q is

nq =
1∏

j=1

qy−j+1 − 1

qj − 1
=

qy − 1

q − 1
= qy−1 + qy−2 + · · ·+ q + 1.

To be an SP-group, nq must divide px. But nq > qx > px since p < q and

x < y. Therefore, no such p and q exist so that G is an SP-group. ¥

Next, let’s look at the case when x > y.

Proposition 7. Let G ' (Zp)
2 × Zq, where p and q are distinct primes with

p < q. Then G is an SP-group if and only if p = 2 and q = 3.

Proof: We know |G| = p2q. The number of subgroups of order 1, p2, q and

p2q equals 1 and 1 will always divide |G|. (Note: We can also ignore the case

when the number of subgroups is pq since np = npq.) The number of subgroups

of order p is

np =
1∏

j=1

p2−j+1 − 1

pj − 1
=

p2 − 1

p− 1
= p + 1.

To be an SP-group, np = p+1 must divide q. But since q is prime, it has only

2 divisors. So p + 1 = q. Since p < q, we know q is odd, so p must be even.

Therefore, p = 2. Since p + 1 = q, q = 3. It can easily be shown that this case

does make an SP-group. Therefore, G ' (Z2)
2 × Z3 is the only SP -group of

this form. ¥

Proposition 8. Let G ' (Zp)
3 × Zq, where p and q are distinct primes with

p < q. Then G is an SP-group if and only if p2 + p + 1 = q.
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Proof: We know |G| = p3q. The number of subgroups of order 1, p3, q and p3q

equals 1 and 1 will always divide |G|. (Note: We can ignore the case when

the number of subgroups is p2 since np = np2 . Also, pq and p2q can be ignored

since np = npq = np2q.) The number of subgroups of order p is

np =
1∏

j=1

p3−j+1 − 1

pj − 1
=

p3 − 1

p− 1
= p2 + p + 1.

To be an SP-group, np = p2 + p + 1 must divide q. But since q is prime, it

has only 2 divisors. So p2 + p + 1 = q. For p and q values that satisfy this

condition, it is easily shown that each case is an SP-Group. ¥

The following example shows that the prime numbers 2 and 7 satisfy this

condition and are an SP-group.

Example 5. Let G ' (Z2)
3 × Z7. Then |G| = 56. Divisors of |G| are 1, 2,

4, 7, 8, 14, 28, and 56. So G is an SP-Group (as indicated by the following

table) since nd divides |G| for all values of d. [GAP was used to assist in the

creation of this table.]

d nd subgroups of G with order d

1 1 〈(0, 0, 0, 0)〉
2 7 〈(0, 0, 1, 0)〉, 〈(0, 1, 0, 0)〉, 〈(0, 1, 1, 0)〉, 〈(1, 0, 0, 0)〉,

〈(1, 0, 1, 0)〉, 〈(1, 1, 0, 0)〉, 〈(1, 1, 1, 0)〉
4 7 〈(0, 0, 1, 0), (0, 1, 0, 0)〉, 〈(0, 0, 1, 0), (1, 0, 0, 0)〉, 〈(0, 1, 0, 0), (1, 0, 0, 0)〉,

〈(0, 0, 1, 0), (1, 1, 0, 0)〉, 〈(0, 1, 0, 0), (1, 0, 1, 0)〉,
〈(1, 0, 0, 0), (0, 1, 1, 0)〉, 〈(0, 1, 1, 0), (1, 1, 0, 0)〉

7 1 〈(0, 0, 0, 1)〉
8 1 〈(0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)〉
14 7 〈(0, 0, 1, 0)(0, 0, 0, 1)〉, 〈(0, 1, 0, 0), (0, 0, 0, 1)〉, 〈(0, 1, 1, 0), (0, 0, 0, 1)〉,

〈(1, 0, 0, 0), (0, 0, 0, 1)〉, 〈(1, 0, 1, 0), (0, 0, 0, 1)〉,
〈(1, 1, 0, 0), (0, 0, 0, 1)〉, 〈(1, 1, 1, 0), (0, 0, 0, 1)〉

28 7 〈(0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1)〉, 〈(0, 0, 1, 0), (1, 0, 0, 0), (0, 0, 0, 1)〉,
〈(0, 1, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1)〉, 〈(0, 0, 1, 0), (1, 1, 0, 0), (0, 0, 0, 1)〉,
〈(0, 1, 0, 0), (1, 0, 1, 0), (0, 0, 0, 1)〉, 〈(1, 0, 0, 0), (0, 1, 1, 0), (0, 0, 0, 1)〉,

〈(0, 1, 1, 0), (1, 1, 0, 0), (0, 0, 0, 1)〉
56 1 G
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Other values of p and q that will work are when p equals 3, 5, 17, 41, 59,

71, 89, 101, and 131 when their respective q values are 13, 31, 307, 1723, 3541,

5113, 8011, 10303, and 17293. A conjecture has been made that there may be

an infinite number of primes that meet the condition p2 + p + 1 = q.

Proposition 9. Let G ' (Zp)
x × Zq, where p and q are distinct primes with

p < q and x ≥ 4. Then G is not an SP-group.

Proof: We know |G| = pxq. For all values of x greater than three, the number

of subgroups of order p is

np =
1∏

j=1

px−j+1 − 1

pj − 1
=

px − 1

p− 1
= px−1 + px−2 + · · ·+ p + 1.

and number of subgroups of order p2 is

np2 =
2∏

j=1

px−j+1 − 1

pj − 1
=

(px − 1)(px−1 − 1)

(p− 1)(p2 − 1)
.

To be an SP-group, np and np2 must divide q. But since q is prime, it has

only 2 divisors. So np = q and np2 = q. Since np and np2 , both equal

q, they must equal each other, so np = np2 . When x is odd, this implies

px−1+px−2+· · ·+p+1 = (px−1+px−2+· · ·+p+1)(px−3+px−5+· · ·+p2+1), or

1 = px−3+px−5+· · ·+p2+1, which is a contradiction. When x is even, this im-

plies px−1+px−2+· · ·+p+1 = (px−2+px−3+· · ·+p+1)(px−2+px−4+· · ·+p2+1),

or px−3 = (px−2 + px−3 + · · · + p + 1)(px−4 + px−6 + · · · + p2 + 1) which is a

contradiction. Therefore, no such p and q exist so that G is an SP-group when

x ≥ 4 and y = 1. ¥

To summarize the previous:

Theorem 4. Let G ' (Zp)
x×Zq, where p and q are distinct primes and x ≥ 2.

Then G is an SP-group if and only if x = 2 and p = 2, q = 3 or x = 3 and p,

q are primes that satisfy the equation p2 + p + 1 = q.

Proposition 10. Let G ' (Zp)
3 × (Zq)

2, where p and q are distinct primes

with p < q. Then G is an SP-group if and only if p = 2 and q = 7.

Proof: We know |G| = p3q2. Again, ignoring the trivial and repeat cases, we

know that the number of subgroups of order p is

np =
1∏

j=1

p3−j+1 − 1

pj − 1
=

p3 − 1

p− 1
= p2 + p + 1.
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The number of subgroups of order q is

nq =
1∏

j=1

q2−j+1 − 1

qj − 1
=

q2 − 1

q − 1
= q + 1.

To be an SP-group, np = p2 + p+1 must divide q2 and nq = q +1 must divide

p3. Since p < q, we know q is odd, so p must be even. Therefore, p = 2.

Since p2 + p + 1 = 7 must divide q2, q = 7. We know q + 1 = 8 must divide

p3 = 8, and 8 does divide 8. It can easily be shown that this case does make

an SP-group. Therefore, G ' (Z2)
3×(Z7)

2 is the only SP -group of this form.¥

Proposition 11. Let G ' (Zp)
4 × (Zq)

y, where p and q are distinct primes

with p < q and y < 4. Then G is not an SP-group.

Proof: We know |G| = p4qy. For x = 4, the number of subgroups of order p is

np =
1∏

j=1

p4−j+1 − 1

pj − 1
=

p4 − 1

p− 1
= p3 + p2 + p + 1.

To be an SP-group, np = p3 + p2 + p+1 must divide qy. Since p < q, we know

q is odd, so p must be even. Therefore, p = 2. Since p3 + p2 + p+1 = 15, then

15 must divide qy. But this is impossible if q is prime. Therefore, no such p

and q exist so that G is an SP-group when x = 4 and y < 4. ¥

Proposition 12. Let G ' (Zp)
5 × (Zq)

y, where p and q are distinct primes

with p < q and y < 5. Then G is not an SP-group.

Proof: We know |G| = p5qy. For x = 5, the number of subgroups of order p2

is

np2 =
2∏

j=1

p5−j+1 − 1

pj − 1
=

(p5 − 1)(p4 − 1)

(p− 1)(p2 − 1)
= (p2 + 1)(p4 + p3 + p2 + p + 1).

To be an SP-group, n2
p = (p2 + 1)(p4 + p3 + p2 + p + 1) must divide qy.

Since p < q, we know q is odd, so p must be even. Therefore, p = 2. Since

(p2 + 1)(p4 + p3 + p2 + p + 1) = 155, then 155 must divide qy. But this is

impossible if q is prime. Therefore, no such p and q exist so that G is an

SP-group when x = 5 and y < 5. ¥

9



Proposition 13. Let G ' (Zp)
x × (Zq)

y, where p and q are distinct primes

with p < q and x ≥ 4. Then G is not an SP-group. (Note: This proposition

can be an alternate proof for Propositions 6, 9, 11, and 12.)

Proof: We know |G| = pxqy. For all values of x ≥ 4, the number of subgroups

of order p2 is

np2 =
2∏

j=1

px−j+1 − 1

pj − 1
=

(px − 1)(px−1 − 1)

(p− 1)(p2 − 1)
. (1)

To be an SP-group, np2 must divide qy. The largest irreducible polynomial

factor of px−1 is Φx(p), the xth cyclotomic polynomial. The degree of Φx(p) is

φ(x), where φ is Euler’s totient. Similarly, the largest irreducible polynomial

factor of px−1 − 1 is Φx−1(p), and its degree is φ(x− 1). For x ≥ 4, both φ(x)

and φ(x− 1) are larger than one. Hence, both Φx(p) and Φx−1(p) remain fac-

tors of the numerator of (1) after performing the division. Consequently, Φx(p)

and Φx−1(p) must both divide qy and so q divides both Φx(p) and Φx−1(p).

Then q divides both px−1 and px−1−1. But then q also divides the difference

(px− 1)− (px−1− 1) = px−1(p− 1). Since q cannot divide px−1, it must divide

p − 1, but this is impossible since p < q. Therefore, no such p and q exist so

that G is an SP-group. ¥

Theorem 5. Let G ' (Zp)
x × (Zq)

y, where p and q are distinct primes with

p < q and x and y are positive integers with x > y. Then G is an SP-group if

and only if x = 3, y = 1, and p2 + p + 1 = q when p, q are prime or x = 3,

y = 2, p = 2, and q = 7.

Looking graphically at all the cases that have either been found (O) or

have been disproved (X), we see all cases of (Zp)
x × (Zq)

y have been shown

when using two distinct primes p and q.

10



y�x 1 2 3 4 5 6 7 8 9 10 . . .

1 O O O X X X X X X X X

2 X O O X X X X X X X X

3 X X X X X X X X X X X

4 X X X X X X X X X X X

5 X X X X X X X X X X X

6 X X X X X X X X X X X

7 X X X X X X X X X X X

8 X X X X X X X X X X X

9 X X X X X X X X X X X

10 X X X X X X X X X X X

. . . X X X X X X X X X X X

More specifically, the trivial case (G ' Zp × Zq) has an infinite number of

solutions. The cases when G ' (Zp)
2×Zq and G ' (Zp)

2× (Zq)
2 both have a

unique solutions when p = 2 and q = 3. The case when G ' (Zp)
3×(Zq)

2 has a

unique solution when p = 2 and q = 7. Finally, the case when G ' (Zp)
3×Zq

has solutions when p2 + p + 1 = q. There may be an infinite number of

SP-groups that meet this last criteria.

We have started examining cases that involve more that two prime num-

bers, i.e. when

G ' (Zp)
x × (Zq)

y × (Zr)
z and

G ' (Zp)
x × (Zq)

y × (Zr)
z × (Zs)

w.

Looking at the case G ' (Zp)
x×(Zq)

y×(Zr)
z, where p, q, and r are distinct

primes, p < q < r, and at least one of x, y and z is > 1, there are many cases

that can occur. We will begin by looking at the case when x = y = z.

Proposition 14 (Trivial Case). Let G ' Zp ×Zq ×Zr, where p, q, and r are

distinct primes. Then G is an SP-group.

Proof: The proof can be seen as a specialized case of Example 1. ¥

Proposition 15. Let G ' (Zp)
2× (Zq)

2× (Zr)
2, where p, q, and r are distinct

primes with p < q < r. Then G is an SP-group if and only if p = 2, q = 3,

and r = 5, 11, or 17.
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Proof: We know |G| = p2q2r2. Ignoring the trivial cases, we look at the

number of subgroups of order p, q, and r.

np =
1∏

j=1

p2−j+1 − 1

pj − 1
=

p2 − 1

p− 1
= p + 1.

nq =
1∏

j=1

q2−j+1 − 1

qj − 1
=

q2 − 1

q − 1
= q + 1.

nr =
1∏

j=1

r2−j+1 − 1

rj − 1
=

r2 − 1

r − 1
= r + 1.

To be an SP-group, (p+1)|q2r2, (q+1)|p2r2, and (r+1)|p2q2. Since r > q > p,

we know r and q are odd, so p2 and hence p must be even so p = 2. Since

p = 2, then 3|q2r2, q + 1|4r2, and r + 1|4q2. Since q < r and 3|q2r2, q = 3.

Now we have 3|9r2, 4|4r2, and r + 1|4 · 9 = 36. The first two equations will be

true for all primes r > 3. In order for r +1|36, r can be 5, 11, or 17 since 6|36,

12|36, and 18|36 respectively. It can easily be shown that these cases make an

SP-group. Therefore, G1 = (Z2)
2× (Z3)

2× (Z5)
2, G2 = (Z2)

2× (Z3)
2× (Z11)

2,

and G3 = (Z2)
2 × (Z3)

2 × (Z17)
2 are the only SP -groups of this form. ¥

Proposition 16. Let G ' (Zp)
2 × (Zq)

2 × Zr, where p, q, and r are distinct

primes with p < q < r. Then G is an SP-group if and only if p = 2 and q = 3.

Proof: We know |G| = p2q2r. Ignoring the trivial cases, we look at the number

of subgroups of order p, q, and r.

np =
1∏

j=1

p2−j+1 − 1

pj − 1
=

p2 − 1

p− 1
= p + 1.

nq =
1∏

j=1

q2−j+1 − 1

qj − 1
=

q2 − 1

q − 1
= q + 1.

nr =
1∏

j=1

r1−j+1 − 1

rj − 1
=

r1 − 1

r − 1
= 1.

To be an SP-group, (p + 1)|q2r, (q + 1)|p2r, and 1|p2q2 (this third condition

will always be true). Since r > q > p, we know r and q are odd, so p2 and

hence p must be even so p = 2. Since p = 2, then 3|q2r and q + 1|4r. Since

q < r and 3|q2r, q = 3. Now we have 3|9r and 4|4r. The first two equations

will be true for all primes r > 3 and it can easily be shown that these cases
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do make SP-groups. Therefore, all groups of the form G ' (Z2)
2× (Z3)

2×Zr

for r being any prime are SP-Groups. ¥

Proposition 17. Let G ' (Zp)
2× (Zq)

2× (Zr)
3, where p, q, and r are distinct

primes with p < q < r. Then G is not an SP-group.

Proof: We know |G| = p2q2r3. Ignoring the trivial cases, we look at the

number of subgroups of order p, q, and r.

np =
1∏

j=1

p2−j+1 − 1

pj − 1
=

p2 − 1

p− 1
= p + 1.

nq =
1∏

j=1

q2−j+1 − 1

qj − 1
=

q2 − 1

q − 1
= q + 1.

nr =
1∏

j=1

r3−j+1 − 1

rj − 1
=

r3 − 1

r − 1
= r2 + r + 1.

To be an SP-group, (p + 1)|q2r3, (q + 1)|p2r3, and (r2 + r + 1)|p2q2. Since

r > q > p, we know r and q are odd, so p2 and hence p must be even so p = 2.

Since p = 2, then 3|q2r3, q + 1|4r3, and r2 + r + 1|4q2. Since q < r and 3|q2r3,

q = 3. Now we have 3|9r3, 4|4r3, and r2 + r + 1|4 · 9 = 36. The first two

equations will be true for all primes r > 3. To have an SP-group, we need

to find a prime r so that (r2 + r + 1)|36, but no such r exists that will make

this true. Therefore, no such p, q, and r exist so that G is an SP-group when

x = y = 2 and z = 3. ¥

Proposition 18. Let G ' (Zp)
2× (Zq)

2× (Zr)
z, where p, q, and r are distinct

primes with p < q < r and z ≥ 4. Then G is not an SP-group.

Proof: We know |G| = p2q2rz. Ignoring the trivial cases, we look at the

number of subgroups of order p, q, and r.

np =
1∏

j=1

p2−j+1 − 1

pj − 1
=

p2 − 1

p− 1
= p + 1.

nq =
1∏

j=1

q2−j+1 − 1

qj − 1
=

q2 − 1

q − 1
= q + 1.
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nr =
1∏

j=1

rz−j+1 − 1

rj − 1
=

rz − 1

r − 1
= rz−1 + rz−2 + · · ·+ r + 1.

We can again show p = 2 and q = 3. To have an SP-group, we need to find a

prime r so that (rz−1 +rz−2 + · · ·+r+1)|36, but (rz−1 +rz−2 + · · ·+r+1) > 36

for all primes r > 3 when z ≥ 4. Therefore, no such p, q, and r exist so that

G is an SP-group when x = y = 2 and z ≥ 4. ¥

Looking at the case G ' (Zp)
x × (Zq)

y × (Zr)
z × (Zs)

w, where p, q, r, and

s are distinct primes, p < q < r < s, and at least one of x, y, z, and w is > 1,

there are many cases that can occur. We will begin by looking at the case

when x = y = z = w.

Proposition 19 (Trivial Case). Let G ' Zp × Zq × Zr × Zs, where p, q, r,

and s are distinct primes. Then G is an SP-group.

Proof: The proof can be seen as a specialized case of Example 1. ¥

Proposition 20. Let G ' (Zp)
2 × (Zq)

2 × (Zr)
2 × (Zs)

2, where p, q, r, and

s are distinct primes with p < q < r < s. Then G is an SP-group if and only

if p = 2, q = 3, and r = 5 when s = 11, 19, 29, 89, 149, 179, or 449, r = 11

when s = 17, 43, 131, 197, 241, or 1451, or r = 17 when s = 67, 101, 577,

1733, or 3467.

Proof: We know |G| = p2q2r2s2. Ignoring the trivial cases, we look at the

number of subgroups of order p, q, r, and s.

np =
1∏

j=1

p2−j+1 − 1

pj − 1
=

p2 − 1

p− 1
= p + 1.

nq =
1∏

j=1

q2−j+1 − 1

qj − 1
=

q2 − 1

q − 1
= q + 1.

nr =
1∏

j=1

r2−j+1 − 1

rj − 1
=

r2 − 1

r − 1
= r + 1.

ns =
1∏

j=1

s2−j+1 − 1

sj − 1
=

s2 − 1

s− 1
= s + 1.
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To be an SP-group, (p + 1)|q2r2s2, (q + 1)|p2r2s2, (r + 1)|p2q2s2, and (s +

1)|p2q2r2. Since s > r > q > p, we know s, r, and q are odd, so p2 and hence

p must be even so p = 2. Since p = 2, then 3|q2r2s2, q + 1|4r2s2, r + 1|4q2s2,

and s + 1|4q2r2. Since q < r < s and 3|q2r2s2, q = 3. Now we have 3|9r2s2,

4|4r2s2, r + 1|4 · 9s2 = 36s2, and s + 1|4 · 9r2 = 36r2. The first two equations

will be true for all primes r, s > 3. In order for r + 1|36s2, r can be 5, 11, or

17 since 6|36s2, 12|36s2, and 18|36s2 respectively.

Case 1. When r = 5, we know s + 1|900, so s can be 11, 19, 29, 89, 149, 179,

and 449 since 12|900, 20|900, 30|900, 90|900, 150|900, 180|900, and 450|900 re-

spectively. It can easily be shown that these cases make an SP-group. There-

fore, G1 = (Z2)
2× (Z3)

2× (Z5)
2× (Z11)

2, G2 = (Z2)
2× (Z3)

2× (Z5)
2× (Z19)

2,

G3 = (Z2)
2 × (Z3)

2 × (Z5)
2 × (Z29)

2, G4 = (Z2)
2 × (Z3)

2 × (Z5)
2 × (Z89)

2,

G5 = (Z2)
2 × (Z3)

2 × (Z5)
2 × (Z149)

2, G6 = (Z2)
2 × (Z3)

2 × (Z5)
2 × (Z179)

2,

and G7 = (Z2)
2× (Z3)

2× (Z5)
2× (Z449)

2 are the only SP -groups of this form.

Case 2. When r = 11, we know s + 1|4356, so s can be 17, 43, 131, 197, 241,

and 1451 since 18|4356, 44|4356, 132|4356, 198|4356, 242|4356, and 1452|4356

respectively. It can easily be shown that these cases make an SP-group. There-

fore, G8 = (Z2)
2×(Z3)

2×(Z11)
2×(Z17)

2, G9 = (Z2)
2×(Z3)

2×(Z11)
2×(Z43)

2,

G10 = (Z2)
2× (Z3)

2× (Z11)
2× (Z131)

2, G11 = (Z2)
2× (Z3)

2× (Z11)
2× (Z197)

2,

G12 = (Z2)
2×(Z3)

2×(Z11)
2×(Z241)

2, and G13 = (Z2)
2×(Z3)

2×(Z11)
2×(Z1451)

2

are the only SP -groups of this form.

Case 3. When r = 17, we know s+1|10404, so s can be 67, 101, 577, 1733, and

3467 since 68|10404, 102|10404, 578|10404, 1734|10404, and 3468|10404 respec-

tively. It can easily be shown that these cases make an SP-group. Therefore,

G14 = (Z2)
2 × (Z3)

2 × (Z17)
2 × (Z67)

2, G15 = (Z2)
2 × (Z3)

2 × (Z17)
2 × (Z101)

2,

G16 = (Z2)
2× (Z3)

2× (Z17)
2× (Z577)

2, G17 = (Z2)
2× (Z3)

2× (Z17)
2× (Z1733)

2,

and G18 = (Z2)
2 × (Z3)

2 × (Z17)
2 × (Z3467)

2 are the only SP -groups of this

form. ¥

We see that the proofs for Propositions 15 and 20 are identical until the

later proposition looks at its fourth prime specifically. A proof to show G '
(Zp1)

2×(Zp2)
2× . . .×(Zpn)2 is an SP -group, where the pi’s are distinct primes

with p1 < p2 < . . . < pn for all n ∈ N, n > 3, would begin the same as the

proof for the case with n − 1 distinct primes. The cases would differ when

we try to find what the nth prime would be. We attempt to find this prime

knowing pn + 1|p2
1 · p2

2 · · · p2
n−1. We believe that this pattern can be continued
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indefinitely, but have not been able to prove our intuition. For example,

G = (Z2)
2×(Z3)

2×(Z5)
2×(Z11)

2×(Z17)
2×(Z19)

2×(Z29)
2×(Z37)

2×(Z43)
2×(Z59)

2

is one of many SP -groups using ten distinct prime numbers. To find an

eleventh prime, we merely need to find a prime p11 so that p11 +1|22 ·32 · · · 592.

One such prime is 67. Unfortunately, there seems to be no pattern as to how

we can find these primes short of brute force.
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